Let a,b,c be three non zero real numbers such that the equation √3acosx+2bsinx=c,x∈[−π2,π2] has two distinct real roots α and β with α+β=π3. Then, the value of ba is .
Open in App
Solution
Given:√3acosx+2bsinx=c and α+β=π3 Substituting x=α and x=β, √3acosα+2bsinα=c⋯⋯(1) √3acosβ+2bsinβ=c⋯⋯(2)
Subtracting equation (2) from (1), √3a(cosα−cosβ)+2b(sinα−sinβ)=0⇒√3a[−2sin(α+β2)sin(α−β2)]+2b[2cos(α+β2)sin(α−β2)]=0using α+β=π3, ⇒√3a[−sin(α−β2)]+2b[√3sin(α−β2)]=0 ∴−√3a+2√3b=0⇒ba=√32√3⇒ba=0.5