The correct options are
A limx→1−f(x)=0
D limx→1+f(x) does not exist
f(x)=1−x(1+|1−x|)|1−x|cos(11−x) for x≠1.
f(x)=⎧⎪⎨⎪⎩(1−x)cos(11−x) ; x<1−(1+x)cos(11−x) ; x>1
limx→1+f(x)=limh→0−(2+h)cos(1−h)
Therefore RHL at x=1 does not exist.
limx→1−f(x)=limh→0hcos1h=0