The correct option is C f′(2)≤0
f(x)=limn→∞⎛⎜
⎜⎝nn(x+n)(x+n2)⋯(x+nn)n!(x2+n2)(x2+n24)⋯(x2+n2n2)⎞⎟
⎟⎠xn
Taking log on both sides, we get
lnf(x)=limn→∞xn⎡⎢
⎢
⎢⎣ln(nnn!)+n∑r=1ln⎛⎜
⎜
⎜⎝x+nrx2+(nr)2⎞⎟
⎟
⎟⎠⎤⎥
⎥
⎥⎦
⇒lnf(x)=limn→∞xn⎡⎢
⎢
⎢⎣n∑r=1ln(nr)+n∑r=1ln⎛⎜
⎜
⎜⎝x+nrx2+(nr)2⎞⎟
⎟
⎟⎠⎤⎥
⎥
⎥⎦
⇒lnf(x)=limn→∞xn⎡⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣n∑r=1ln(1r/n)+n∑r=1ln⎛⎜
⎜
⎜
⎜
⎜
⎜
⎜⎝x+1r/nx2+(1r/n)2⎞⎟
⎟
⎟
⎟
⎟
⎟
⎟⎠⎤⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
⇒lnf(x)=x⎡⎢⎣1∫0ln(1/t) dt+1∫0ln(x+1/tx2+1/t2) dt⎤⎥⎦
⇒lnf(x)=x⎡⎢⎣1∫0(−lnt+ln(tx+1)−lnt−ln(t2x2+1)+lnt2)dt⎤⎥⎦
Let tx=z
Then lnf(x)=x∫0ln(1+z1+z2)dz ⋯(1)
⇒f(x)=e x∫0ln⎛⎝1+z1+z2⎞⎠dz
Differentiating (1) w.r.t. x, we get
f′(x)f(x)=ln(1+x1+x2)
We know that f(x)>0 ∀ x>0
For f′(x)>0
ln(1+x1+x2)>0⇒1+x1+x2>1⇒x>x2⇒0<x<1
∴f(x) is increasing ∀ x∈(0,1)
Option (1) is incorrect.
Option (2) is correct.
Option (3):
f′(x)=f(x)×ln(1+x1+x2)⇒f′(2)=f(2)×ln(3/5)≤0
Statement is correct.
Option (4):
f′(3)f(3)=ln(2/5)f′(2)f(2)=ln(3/5)
Statement is incorrect.