The correct option is A S2 only
Let, x(t)=Accos[2πfct+βxsin(2πfmt)]
So, y(t)=x(t2)=Accos[πfct+βxsin(2πfmt2)]
For x(t),Δfx=βxfm
(BW)x=(1+βx)2fm
For y(t),βy=βx
Δfy=βy(fm2)=βx(fm2)=Δfx2
(BW)y=(1+βy)2(fm2)=(1+βx)fm=(BW)x2
So, (BW)y=((BW)x)2⇒ S1 is incorrect
βy=βx⇒ S2 is correct
Δfy=Δfx2 S3 is incorrect