The correct option is D C→R;D→P
(A) x=√6+√6+√6+…up to ∞
⇒x=√6+x⇒x2−x−6=0⇒x=−2,3
As x>0, so x=3
A→S
(B) √a−x,√x,√a+x are in A.P., then
2√x=√a−x+√a+x
Squaring both the sides, we get
⇒4x2=2a+2√(a2−x2)⇒4x=2a+2√a2−x2⇒2x−a=√a2−x2
Again squaring both the sides, we get
⇒4x2+a2−4xa=a2−x2⇒5x2=4xa⇒x(5x−4a)=0
As x and a are positive integer, so
x=4a5
Hence, the minimum value of a=5
B→S
(C) 3a+2b+4c=0
⇒b=−(3a+4c)2
Now,
ax+by+c=0⇒ax−(3a+4c)y2+c=0⇒a(x−3y2)+c(1−2y)=0⇒(x−3y2)+ca(1−2y)=0
The fixed point is (p,q)=(34,12)
Therefore, 2p+q=2
C→R
(D)
k(sin18 ∘+cos36 ∘)2=5⇒k(√5−14+√5+14)2=5∴k=4
D→P