The correct option is A (A)→(P),(R) ; (B)→(Q)
(A)
√i=√0+1⋅i⇒√i=±{√12(√02+12+0)+i√12(√02+12−0)}⇒√i=±1√2(1+i)
Similarly,
√−i=±1√2(1−i)
∴Possible values of √i+√−iare±√2,±√2i
(A)→(P),(R)
(B)
z3=¯¯¯z⇒|z3|=|¯¯¯z|⇒|z|3=|z|⇒|z|(|z|2−1)=0⇒|z|2=1 (∵z≠0)⇒|z|=1 (∵|z|>0)
Now,
z3=¯¯¯z⇒z4=z¯¯¯z=|z|2=1⇒z4=cos2nπ+isin2nπ⇒z=cos2nπ4+isin2nπ4⇒z=cosnπ2+isinnπ2
Putting n=0,1,2,3
⇒z=±1,±i
(B)→(Q)