The correct option is B (A)→(P),(T)
(A)
a,b,c,d are in A.P.
Let a=x−3y,b=x−y,c=x+y,d=x+3y
Given a+b+c+d=32
⇒4x=32
⇒x=8
Also, 15ad=7bc
⇒15(x2−9y2)=7(x2−y2)
⇒8x2=128y2
⇒y2=4⇒y=±2
∴a=2,b=6,c=10,d=14 (∵a<b<c<d)
(B)
116,a,b are in G.P.
⇒16a2=b ⋯(1)
a,b,16 are in H.P.
⇒2a6a+1=b ⋯(2)
From (1) and (2),
16a2=2a6a+1
⇒48a2+8a−1=0
⇒a=−14,112
∴a=112 and b=19 (∵a>0,b>0)