The correct option is A (C)→(P) ; (D)→(T)
(C)
1+14+1⋅34⋅8+1⋅3⋅54⋅8⋅12+⋯⋯∞(1+x)n=1+nx+n(n−1)x22!+⋯
Comparing both, we get
nx=14⋯(1)⇒n(n−1)x22=332
Using equation (1), we get
n(n−1)32n2=332⇒n−1n=3⇒n=−12⇒x=−12
∴ Required sum =(1−12)−1/2=√2
(C)→(P)
(D)
132+1+142+2+152+3+⋯⋯∞
General term of the series is
Tn=1n2+(n−2)n=3,4,5,……⇒Tn=13[1n−1−1n+2]
Now, S=∞∑n=3Tn
⇒3S=∞∑n=3[1n−1−1n+2]⇒3S=[(12−15)+(13−16)+(14−17)+(15−18)+⋯]⇒3S=[12+13+14]∴S=1336
(D)→(T)