The correct option is D (D)→(Q),(R)
(C)
Let Q(t2,2t) be a point on the parabola.
Now, the area of triangle OPQ is
∣∣
∣
∣
∣∣12∣∣
∣
∣
∣∣004−4t22t00∣∣
∣
∣
∣∣∣∣
∣
∣
∣∣=6⇒8t+4t2=±12⇒t2+2t+1=1±3⇒(t+1)2=−2 or 4
⇒(t+1)2=4⇒t=−1±2⇒t=−3,1
Then, the point Q is (1,2) or (9,−6).
(C)→(P),(Q)
(D)
Points (1,2) and (−2,1) satisfy both the curves.
(D)→(Q),(R)