The correct option is D (B)→(R),(T)
(A)
Let f(x)=sin2x−2asinx+a+3
Let sinx=t, where t∈[−1,1]
Given equation is t2−2at+(a+3)
In t∈[−1,1]
Largest value can occur at t=1 or t=−1
At t=1,−a+4=7
⇒a=−3
At t=−1, 1+3a+3=7
⇒a=1
(A)→(R),(S)
(B)
f(x)=x4−ax2+2a−1,x∈[−1,2]
Let t=x2,t∈[0,4]
g(t)=t2−at+(2a−1) in t∈[0,4]
Smallest value can occur at
g(0)=2a−1=−7
⇒a=−3g(4)=15−2a=−7
⇒a=11g(a2)=a24−a22+2a−1=−7⇒a2−8a−24=0⇒a=4±2√10
(B)→(R),(T)