The correct option is B 2365
The given equation is, 3t+116−3t−37=t−48+3t+114
On arranging the terms according to the denominator, we get
⇒3t+116−t−48=3t−37+3t+114⇒3t+1−2(t−4)16=2(3t−3)+3t+114⇒3t−2t+1+816=6t+3t−6+114⇒ t+916=9t−514
On cross multiplication, we have
⇒ 14(t+9)=16(9t−5)⇒ 14t+126=144t−80⇒ 14t−144t=−126−80⇒ −130t=−46⇒ t=−46−130⇒ t=2365