wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations :(i) cos θ+cps 2θ+cos 3θ=0(ii) cos θ+cos 3θcos 2θ=0(iii) sin θ+sin 5θ=sin 3θ(iv) cos θ cos 2θ cos 3θ=14(v) cos θ+sin θ=cos 2θ+sin2θ(vi) sin θ+sin 2θ+sin 3θ=0(vii) sin θ+sin 2θ+sin 3θ+sin 4θ=0(viii) sin 3θsin θ=4 cos2θ2(ix) sin 2θsin 4θ+sin 6θ=0

Open in App
Solution

(i) cos θ+cps 2θ+cos 3θ=0cos 2θ+2cos 2θ.cos θ=0[cos θ+cos 3θ=2 cos 2θ.cos θ]cos 2θ(1+2cos θ)=0eithercos 2θ=0 Or 1+2 cos θ=02θ=(2n+1)π4,nz Or cos θ=12θ=(2n+1)π4,nz or cos θ=+cos(ππ3) Or cos θ=cos 2π3 Or θ=2nπ±2π3,nzThus,θ=(2n+1)π4, Or(2nπ±2π3),nz(ii) cos θ+cos 3θcos 2θ=02 cos 2θ.cos θcos 2θ=0cos 2θ(2cos θ1)=0eithercos 2θ=0 Or 2 cos θ=12θ=(2n+1)π2,nzOr cos θ=12=cos π3θ=(2n+1)π4,nzOr θ=2mπ±π3,mz(iii) sin θ+sin 5θ=sin 3θ2sin 3θ.cos 2θsin 3θ=0[sin C+sin D=2 sin C+D2,cosCD2]sin 3θ[2 cos 2θ1]eithersin 3θ=0 Or 2 cos1=03θ=nπ,nz Or cos 2θ=12=cosπ3θ=nπ3,nz Or 2θ=2mπ±π3,mz Or θ=mπ±π6Thus,θ=nπ3 Or mπ±π6,n,m,z(iv) cos θ cos 2θ cos 3θ=14We have,cos θ cos 2θ cos 3θ=142 cos θ.cos 3θ.cos 2θ=12(cos 4θ+cos 2θ)cos 2θ=12(2cos2 2θ1+cos 2θ)cos 2θ=122cos3 2θ+cos2 2θcos 2θ=124cos2 2θ+2 cos2 2θ2 cos 2θ1=0(2cos2 θ1)(2cos 2θ+1)=0eitherOr 2cos 3θ+1=0cos 4θ=0 Or cos 2θ=124θ=(2n+1)π2 Orcos 2θ=cos 2π3θ=(2n+1)π8 Or2θ=2mπ±2π3θ=mπ±π3Thus,θ=(2n+1)π8Or θ=mπ±π3,m,nz(v) cos θ+sin θ=cos 2θ+sin2θWe have,cos θ+sin θ=cos 2θ+sin2θcos θcos 2θ=sin 2θsin2θ2 sin302,sinθ2=2cos3θ2,sinθ22 sin θ2 (sin3θ2cos3θ2)=0eithersin θ2=0 Or sin 3θ2 cos 3θ2=0θ2=nπ,nzOr tan 3θ2=1 tan π4θ=2nπ,nz Or3θ2=nπ+π4Or θ =2n π3+π32,nzThus,θ=2mπ Or 2nπ3+π6,nz(vi) sin θ+sin 2θ+sin 3θ=0We have,sin θ+sin 2θ+sin 3θ=0sin 2θ+2 sin 2θ.cos θ=0sin 2θ+(1+2 cos θ)=0eithersin 2θ=0 Or 1+2 cos θ=02θ=nπ,nzOr cosθ=12=cos(ππ3)θ=nπ2,nzOr θ=2mπ± 2π3,mzThus,θ=nπ2,nz Or θ=2mπ±2π3,mz(vii) sin θ+sin 2θ+sin 3θ+sin 4θ=0Given:sinx+sin x+sin 3x+sin 4x=0(sin 4θ+sin 2θ)+(sin 3θ+sin θ)=0Using,(sin A+sin B)formula=>2 sin [(4θ+2θ)2] cos [(4θ2θ)2]+2 sin [(3θ+θ)2] cos [(3θθ)2]=02 sin3θ cosθ+2 sin 2θ cos θ=02 cos θ(sin 3θ+sin 2θ)=02 cos θ(2 sin [(3θ+2θ)2] cos [(3θ2θ)2])=04 cos θ sin 5θ2 cos π2=0cos θ=0;sin5θ2=0;cosπ2=0θ=(2n+1)π2;5θ2=mπ;θ2(2r+1)π2θ=(2n+1)π2;θ=2mπ5;θ=(2r+1)π,m,r,nz(viii) sin 3θsin θ=4 cos2θ2We have,sin 3θsin θ=4 cos2θ22 cos 2θ.sin θ=2 (2 cos2θ1)2 cos 2θ.sin θ=2 cos 2θ [ cos 2θ=2 cos2θ1]2 cos 2θ(sin θ1)=0eithercos 2θ=0 Or sin θ1=02θ=(2n+1)π2,nzOr sin θ=1=sin π2θ=(2n+1)π4,nzOr θ=mπ+(1)mπ2,mzThus,θ=(2n+1)π4,nzor mπ+(1)Mπ2,mz(ix) sin 2θsin 4θ+sin 6θ=0sin 2θsin 4θ+sin 6θ=0(sin 2θ+sin 6θ)sin 4θ=02 sin(802),cos (402)sin 4θ=02 sin 4θ.cos 2θsin 4θ=0sin 4θ(2 cos 2θ1)=0sin 4θ=0 or 2 cos 2θ1=04θ=n(π) or cos 2θ=1/2θ=(nπ4)or cos 2θ=cos(π3)θ=(nπ4)or θ=n(π)(π6)


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative of Standard Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon