wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve the following equations :(i) cot θ+tan θ=2(ii) 2 sin2θ=3 cosθ, 0 θ 2π(iii) sec θ cos 5θ+1=0, 0< θ<π2(iv) 5 cos2θ+7 sin2θ6=0(v) sin x3 sin 2x+sin 3x=cos x3 cos 2x+cos 3x

Open in App
Solution

(i) cot θ+tan θ=2cosθsinθ + sinθcosθ=2cos2θ+sin2θsinθ cosθ=2sin2θ+cos2θ=2 sin θ cos θ1=2 sinθ cosθ [ sin2θ+cos2θ=1]2 sinθ cosθ=1sin 2θ=1sin2θ=sin π2sin2θ=sin (2n+1)2 π2θ= (2n1)2 πx= (2n+1)4 π,nZ(ii) 2 sin2θ=3 cosθ, 0 θ 2π22 cos2θ=3 cosθ2 cos2θ+3 cos θ2=02 cos2θ+4 cos θcos θ2=0(cos θ+2)(2cos θ1)=0cos θ=2 or cos θ=0.5cos θ=2,never possiblecos θ=0.5=60,300(iii) sec θ cos 5θ+1=0, 0< θ<π2sec θ cos 5θ+1=0cos 5x+cos xcos x=0 cos x 02 cos 3x cos 2x=0cos 3x=0 or cos 2x=03x=π2 or 2x=π2x=π4,π6(iv) 5 cos2θ+7 sin2θ6=05(1sin2θ)+7 sin2θ6=0 [As cos 2θ=1sin2θ]5sin2θ+7 sin2θ6=05+2sin2θ 6=02 sin2θ 1=02 sin2θ=1sin2θ=12sin θ=± 12θ=nπ ± π4(v) sin x3 sin 2x+sin 3x=cos x3 cos 2x+cos 3x(sin x+sin 3x)3 sin 2x(cos x+cos 3x)+3cos 2x=02 sin 2x cos x3 sin 2x2 cos 2x cos x+2 cos 2x=0sin 2x(2 cos x3)cos 2x(2 cos x3)=0(2 cos x3)(sin 2xcos 2x)=0cos x=32 or sin 2xcos 2x=0but cos x[1,1]cos x 32sin 2x=cos 2xtan 2x=12x=nπ+π4x=nπ2+π8


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon