Solve the following equations :(i) cot θ+tan θ=2(ii) 2 sin2θ=3 cosθ, 0 ≤ θ ≤ 2π(iii) sec θ cos 5θ+1=0, 0< θ<π2(iv) 5 cos2θ+7 sin2θ−6=0(v) sin x−3 sin 2x+sin 3x=cos x−3 cos 2x+cos 3x
(i) cot θ+tan θ=2cosθsinθ + sinθcosθ=2cos2θ+sin2θsinθ cosθ=2sin2θ+cos2θ=2 sin θ cos θ1=2 sinθ cosθ [∵ sin2θ+cos2θ=1]2 sinθ cosθ=1sin 2θ=1sin2θ=sin π2sin2θ=sin (2n+1)2 π2θ= (2n−1)2 πx= (2n+1)4 π,n∈Z(ii) 2 sin2θ=3 cosθ, 0 ≤ θ ≤ 2π2−2 cos2θ=3 cosθ2 cos2θ+3 cos θ−2=02 cos2θ+4 cos θ−cos θ−2=0(cos θ+2)(2cos θ−1)=0cos θ=−2 or cos θ=0.5cos θ=−2,never possiblecos θ=0.5=60,300(iii) sec θ cos 5θ+1=0, 0< θ<π2sec θ cos 5θ+1=0cos 5x+cos xcos x=0⇒ cos x ≠02 cos 3x cos 2x=0cos 3x=0 or cos 2x=03x=π2 or 2x=π2x=π4,π6(iv) 5 cos2θ+7 sin2θ−6=05(1−sin2θ)+7 sin2θ−6=0 [As cos 2θ=1−sin2θ]5−sin2θ+7 sin2θ−6=05+2sin2θ − 6=02 sin2θ −1=02 sin2θ=1sin2θ=12sin θ=± 1√2θ=nπ ± π4(v) sin x−3 sin 2x+sin 3x=cos x−3 cos 2x+cos 3x(sin x+sin 3x)−3 sin 2x−(cos x+cos 3x)+3cos 2x=02 sin 2x cos x−3 sin 2x−2 cos 2x cos x+2 cos 2x=0sin 2x(2 cos x−3)−cos 2x(2 cos x−3)=0(2 cos x−3)(sin 2x−cos 2x)=0cos x=32 or sin 2x−cos 2x=0but cos x∈[−1,1]⇒cos x ≠32sin 2x=cos 2xtan 2x=12x=nπ+π4x=nπ2+π8