Solve the following equations :(i) sin θ+cos θ=√2(ii) √3 cos θ+sin θ=1(iii) sin θ+cos θ=1(iv) cosec θ=1+cos θ(v) (√3−1)cos θ+(√3+1)sin θ=2
(i) sin θ+cos θ=√2We have,sin θ+cos θ=√2⇒1√2 sin θ+1√2cosθ=1⇒sinπ4sin θ+cosπ4cos θ=1 [∵cosπ4=sinπ4=1√2]⇒cos(θ−π4)=cos 0∘⇒θ−π4=2nπ,n∈z⇒θ=2nπ+π4,n∈z∴θ=(8n+1)π4,n∈z(ii) √3 cos θ+sin θ=1Dividing both side by 2,we get√32cos θ+12sin θ=12⇒cos π6 cos θ+sin π6sin θ=12 [∵sin=π6=12,cosπ6=√32]⇒cos(θ−π6)=cos π3⇒θ=π6=2n±π3,n∈z⇒θ=2nπ ±π3+π6,n∈z⇒θ=(4n+1)π2Or(12m−1)π6,nm∈z(iii) sin θ+cos θ=1We have,sin θ+cos θ=1Divide both side by√2,we get⇒1√2 sin θ+ 1√2 cos θ=1√2⇒sin π4 sin θ+cos π4 cos θ=1√2⇒ θ( θπ4)=cos π4⇒ θ=π4=2nπ± π4,n∈Z⇒ θ=2nπ+ π2,2nπ n∈Z(iv) cosec θ=1+cos θWe have,cosec θ=1+cos θ⇒ 1sinθ=1+cosθsinθ⇒ 1=sin θ+cos θDivide both side by√2,we get⇒1√2 sin θ+1√2 cos θ=1√2⇒sin π4 sin θ+cos π4 cos θ=1√2⇒cos ( θ− π4)=cos π4⇒ θ=π4=2nπ± π4,n∈Z∴ θ(2nπ+π2) Or 2nπ,n∈Z(v) (√3−1)cos θ+(√3+1)sin θ=2Divide on both sides by2√2(√3−1)2√2 cos θ+(√3+1)2√2 sin θ=1√2sin (θ+tan−1(√3−1√3+1))=sin π4θ=2nπ+π3 Or 2nπ − π6 n∈Z