Odd numbers are of the form of 2n−1.where n=1,2,3,⋯
[0.5 mark]
Now, Sum of nconsecutive odd numbers(S)=1+3+5+⋯+(2n−1)S=(2−1)+(4−1)+(6−1)+⋯+(2n−1)
[0.5 mark]
S=2+4+6+⋯+2n−(1+1+⋯+1+1)n times
[0.5 mark]
S=2(1+2+3+⋯+n)−n
[0.5 mark]
S=2×n×(n+1)2−nS=n×(n+1)−nS=n2
Hence, sum of n consecutive odd numbers is divisible by n.
[1 mark]