The correct option is B 2ω−10sin((ω−10)π)
Given, sinusoidal pulsez(t)={ej10t;|t|<π0;|t|>πWe may express z(t) as the product of a complex sinusoid ej10t and a rectangluar pulse x(t)Letx(t)={1;|t|<π0;|t|>πFourier transform of x(t) is X(jω)∴X(jω)=∫∞−∞x(t)e−jωtdt=∫π−π1.e−jωtdt=[e−jωt−jω]π−π=−1jω[e−jπω−e+jωπ]=ejωπ−e−jωπjω=2ω[ejωπ−e−jωπ2j]∴X(jω)=2ωsin(ωπ)By using frequency shifting property of Fourier transform, we get,z(t)=ej10t.x(t)FT⟷X(j(ω−10))z(t)FT⟷2ω−10sin((ω−10)π)