The given figure shows a rhombus ABCD in which angle BCD=180∘. Find angle s x and y.
In rhombus ABCD, diagaonals AC and BD bisect each other at 90∘∠BCD=80∘∵ Diagonals bisect the opposite angles also∠BCD=∠BAD (Opposite angles of rhombus)∴ ∠BAD=80∘and ∠ABC=∠ADC=180∘−80∘=100∘∴ Diagonals bisect opposite angles∴ ∠OCB or ∠PCB=80∘2=40∘In ΔPCM,Ext. CPD=∠OCB+∠PMC100∘=40∘+x ⇒ x=110∘−40∘=70∘and ∠ADO=12∠ADC=12×100∘=50∘Hence x=70∘ and y=50∘