The number of solution in[0,π/2]of the equation cos 3x tan 5x=sin7x is
6
Given:cos 3x tan 5x=sin7x⇒cos (5x−2x)tan 5x=sin(5x+2x)⇒tan 5x=sin(5x+2x)cos(5x−2x)⇒tan 5x=sin 5x cos2x+cos5x sin 2xcos 5x cos2x+sin 5x sin 2x⇒sin 5xcos 5x=sin 5x cos2x+cos5x sin 2xcos 5x cos2x+sin 5x sin 2x⇒sin 5x cos 5x cos 2x+sin2 5x sin 2x=sin 5x cos 5x cos 2x+cos2 5x sin 2x⇒sin2 5x sin 2x=cos2 5x sin 2x⇒(sin2 5x−cos2 5x)sin2x=0⇒(sin 5x−cos 5x)(sin 5x+cos 5x)sin2x=0⇒sin 5x−cos 5x=0,sin 5x+cos 5x=0 or sin 2x=0⇒sin 5xcos 5x=1,sin5xcos 5x=−1 or sin 2x=0Now,tan 5x=1⇒tan 5x=tanπ4⇒5x=nπ+π4,n∈Z⇒x=nπ5+π20,n∈ZFor n=0,1 and 2,the value of x are π20,π4and 9π20,respectivelyortan5x=1⇒tan 5x=tan3π4⇒5x=nπ+3π4,n∈Z⇒x=nπ5+3π20,n∈ZFor n=0 and 1,the value s of x are3π20and7π20,respectively.And,sin 2x=0⇒sin 2x=sin 0⇒2x=nπ,n∈Z⇒x=nπ2,nπZFor n=0 the value of x is 0.Also,f or the odd multiple of π2,tan xis not defined.Hence,there are six solutions.