The number of values of θ in [0,2π]that satisfy the equation sin2θ−cosθ14
2
sin2θ−cosθ=14⇒(1−cos2θ)−cosθ= 14⇒4−4cos2θ−4cosθ=1⇒4 cos2θ+4cosθ−3=0⇒4 cos2θ+6cosθ−2 cosθ−3=0⇒2cosθ(2cosθ+3)−1(2cosθ+3)=0⇒(2 cosθ+3)(2cosθ−1)=0⇒2 cosθ+3=0 or ,2cosθ−1=0⇒cosθ=−32 or cos θ=12Here,cosθ=−32 is not possible.∴ cosθ=12⇒cosθ=cos π3⇒θ=2nπ± π3Now for n=0 and 1,the values of θ are π3,5π3 and 7π3,but 7π3 is not in [o,2π]Hence,there are two solutinos in[o,2π].