The number of values of x in the interval [0,5π]satisfying the equation 3 sin2 x−7 sin x+2=0 is
6
Given:3 sin2 x−7 sin x+2=0⇒3 sin2 x−6 sin x−sin x+2=0⇒3 sin x(sin x−2)−1(sin x−2)=0⇒(3 sin x−1)=0 or sin x−2=0Now,sin x=2 is not possible,as the value of sin x lies between-1 and 1.⇒sin x=13Also, sin x is positive only in first two quadrants. Therefore sin x is positive twice in the interval[0,π]Hence,it is positive six times in the interval[0,5π],v/z [0,π],[2π,3π] and [4π,5π].