The correct option is B 2
Given, x1[n]=u[n]
X1(z)=11−z−1=11−z|z|>1
y2[n]=2(13)nu[n]
⇒Y1(z)=2zz−13
x2[n]=(12)nu[n]
Y1(z)=2zz−12;|z|>13
x2[n]=(12)nu[n]
X2(z)=zz−12;|z|>12
Y2(2)=H1(z)X2(z)
=2z(z−1)(z−12)(z−13);|z|>12
Y2(z)z=2(z−1)(z−12)(z−13);|z|>12
Taking inverse Z-transform,
y2[n]=[−6(12)n+8(13)n]u[n]
∴ By comparing with given y[n],
k1=−6 and k2=8
∴k1+k2=−6+8=2