The smallest positive angle which satisfies the quation2sin2θ+√3 cos θ+1=0 is
5π6
2sin2 θ+√3 cos θ+1=0⇒2(1−cos2θ)+√3 cosθ +1=0⇒ 2−2cos2θ +√3 cosθ +1=0⇒2 cos2θ− √3 cosθ−3⇒2 cos2θ−2√3 cosθ+√3 costθ−3=0⇒2 cosθ(cosθ−√3)+√3(cosθ−√3)=0⇒(2 cosθ+√3) (cosθ−√3)=0⇒2 cosθ+√3=0 or‘,cosθ−√3=0∴ cosθ=−√32 or cosθ=√3 is not possible.⇒cosθ=cos(5π6)⇒θ=2nπ± 5π6,n∈ZFor n =0,the value of θ is ± 5π6Hence,the smallest positive angle is 5π6.