The smallest value of (θ) satisfying the equation √3 (cotθ+tanθ) = 4 is
π/6
Given:√3(cotθ+tan θ)=4⇒√3(cosθsinθ+sinθcosθ)⇒√3(cos2 θ+sin2 θ)=4 sinθ cosθ⇒√3=2 sin 2θ[sin2θ=2 sinθ cosθ]⇒sin 2θ=√32⇒sin 2θ=sinπ2⇒2θ=nπ+(−1)nπ3,n∈Z⇒θ=nπ2+(−1)nπ6,n∈ZTo obrain the smallest value ofθ,we will put n=0 in the above equation.Thus,we have,θ=π6Hence,the smallest value ofθ is π6.