wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of (xdyydxxdx+ydy)2=x2+y21x2y2 is

A
x2+y2=sin[tan1(yx)+c]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
x2+y2=cos[tan1(yx)+c]
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
y=xtan(cos1x2+y2+c)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y=xtan(sin1x2+y2+c)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A x2+y2=sin[tan1(yx)+c]
B x2+y2=cos[tan1(yx)+c]
D y=xtan(sin1x2+y2+c)
(xdyydxxdx+ydy)2=x2+y21(x2+y2)xdx+ydy1(x2+y2)=xdyydxx2+y2Since, d(tan1(yx))=xdyydxx2+y2and d(x2+y2)=2(xdx+ydy)12d(x2+y2)(x2+y2)1(x2+y2)=xdyydxx2+y2=d(tan1(yx))Now, put x2+y2=z2 in the L.H.S., thenzdzz1z2=dtan1(yx)Integrating both sides, we getsin1z=tan1(yx)+csin1(x2+y2)=tan1(yx)+cx2+y2=sin[tan1(yx)+c]x2+y2=cos[π2tan1(yx)+c]x2+y2=cos[tan1(yx)+c]Also y=xtan[sin1(x2+y2)+c]

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative from First Principles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon