The correct options are
A √x2+y2=sin[tan−1(yx)+c]
B √x2+y2=cos[tan−1(yx)+c]
D y=xtan(sin−1√x2+y2+c)
(xdy−ydxxdx+ydy)2=x2+y21−(x2+y2)⇒xdx+ydy√1−(x2+y2)=xdy−ydx√x2+y2Since, d(tan−1(yx))=xdy−ydxx2+y2and d(x2+y2)=2(xdx+ydy)⇒12d(x2+y2)(√x2+y2)√1−(x2+y2)=xdy−ydxx2+y2=d(tan−1(yx))Now, put x2+y2=z2 in the L.H.S., then⇒zdzz√1−z2=dtan−1(yx)Integrating both sides, we getsin−1z=tan−1(yx)+c⇒sin−1(√x2+y2)=tan−1(yx)+c⇒√x2+y2=sin[tan−1(yx)+c]⇒√x2+y2=cos[π2−tan−1(yx)+c]⇒√x2+y2=cos[tan−1(yx)+c]Also y=xtan[sin−1(√x2+y2)+c]