The value oflimx→∞(x2−1x2+1)x2is
1
e−1
e−2
e−3
limx→∞(x2+1−2x2+1)x2=limx→∞(1+−2x2+1)x2=limx→∞[1+−2x2+1]x2+1−2−2x2x2+1=e−2
The value oflimx→03√1+sinx−3√1−sinxxis