The value of limx→∞[√x+√x+√x−√x]is.
1/2
1
0
-1/2
=limx→∞[√x+√x+√x−√x] =limx→∞x+√x+√x−x√x+√x+√x+√x=limx→∞√x+√x√x+√x+√x+√x =limx→∞√x(1+1√x)1/2√x⎡⎢⎣(1+1√x√1+1√x)1/2+1⎤⎥⎦=11+1=12
The value of limx→∞x+cos xx+sin xis
The value oflimx→1xn+xn−1+xn−2+.......+x2+x−nx−1
limx→a[f(x)+g(x)]=limx→af(x)+limx→ag(x) is valid if limx→af(x) does not exists?