The vertices of a triangle ABC areA(0,0),B(2,−1)and C(9,2).Find cos B.
We know thatcos B=a2+c2−b22acWhere a=BC,b=CA and C=AB are the sides of the triangle ABC.We have,a=BC=√(9−2)2+(2+1)2=√49+9=√58b=CA=√(0−9)2+(0−2)2=√81+4=√85and,c=AB=√(2−0)2+(−1−0)2=√4+1=√5∴cos B=a2+c2−b22ac=58+5−852×√58×√5=63−852√290=−222√290=−11√290Hence,cos B=−11√290