The correct option is A (x+1)
Given polynomial: p(x)=3x2+10x+7
By factor theorem, if (x−a)is a factor of p(x),then p(a)=0
Checking (x+1):
p(−1)=3×(−1)2+10×(−1)+7
p(−1)=0
Hence, (x+1) is a factor of p(x).
Checking (x+7):
p(−7)=3×(−7)2+10×(−7)+7
p(−7)=147−70+7=84≠0
Hence, (x+7) is not a factor of p(x).
Checking (x−1):
p(1)=3×(1)2+10×(1)+7
p(1)=20
Hence, (x−1) is a not factor of p(x).
Checking (x−7):
p(7)=3×(7)2+10×(7)+7
p(7)=147+70+7=224≠0
Hence, (x−7) is not a factor of p(x).
So, (x+1) is the factor of the polynomial p(x)=3x2+10x+7.