What does the equation (a−b)(x2+y2)−2 abx=0 become if the origin is shifted to the point (aba−b,0) without rotation ?
Substituting x=X+aba−b,y=Y+0 in the given equation,we get:(a−b)[(X+aba−b)2+Y2]−2ab×[X+aba−b]=0⇒(a−b)(X2+a2 b2(a−b)2+2abXa−b+Y2)2abX−2a2b2a−b=0⇒(a−b)(X2+Y2)+−a2b2a−b+2abX−2abX−2a2b2a−b=0⇒(a−b)(X2+Y2)+−a2b2a−b=0⇒(a−b)2(X2+Y2)=a2b2Hence,the transformed equation is(a−b)2(X2+Y2)=a2b2