Given that:
3log4+2log5−13log64−12log16=m
Using logb(xm)=mlogbx
⇒log43+log52−log(64)13−log(16)12=m
⇒log64+log25−log4−log4=m
Using logbx+logby=logbxy
⇒log(64×25)−(log4+log4)=m
⇒log(64×25)−log16=m
Using logbx−logby=logbxy
⇒log(64×2516)=m
⇒log100=m
⇒m=2
Hence the correct answer is option (b).