Q. In ΔPQR, right-angled at Q, PR+QR=25cm and PQ=5cm. Determine the values of sinP, cosP and tanP.
View Solution
Q. State whether the following are true or false. Justify your answer. (i) The value of tanA is always less than 1. (ii) secA=125 for some value of angle A. (iii) cosA is the abbreviation used for the cosecant of angle A. (iv) cotA is the product of cot and A. (v) sinθ=43 for some angle θ.
View Solution
Q. If sinA=34, calculate cosA and tanA.
View Solution
Q. In triangle ABC, right-angled at B, if tanA=1√3, find the value of: (i) sinAcosC+cosAsinC (ii) cosAcosC−sinAsinC
View Solution
Q. If tan2A=cot(A−18∘), where 2A is an acute angle, find the value of A.
View Solution
Q. Choose the correct option and justify your choice: sin2A=2sinA is true when A=
0∘
30∘
45∘
60∘
View Solution
Q. Choose the correct option and justify your choice: 2tan30∘1+tan230∘=
sin60∘
cos60∘
tan60∘
sin30∘
View Solution
Q. In Fig., find tanP−cotR
View Solution
Q. Given 15cotA=8, find sinA and secA.
View Solution
Q. Choose the correct option and justify your choice: 1−tan245∘1+tan245∘=
tan90∘
1
sin45∘
0
View Solution
Q. If tanA=78, evaluate : (i) (1+sinθ)(1−sinθ)(1+cosθ)(1−cosθ) (ii) cot2θ
View Solution
Q. Given secθ=1312, calculate all other trignometric ratios.
View Solution
Q. If 3cotA=4, check whether 1−tan2A1+tan2A=cos2A−sin2A or not.
View Solution
Q. If tan(A+B)=√3 and tan(A−B)=1√3;0∘<A+B≤90∘;A>B, find A and B.
View Solution
Q. State whether the following are true or false. Justify your answer. (i) sin(A+B)=sinA+sinB (ii) The value of sinθ increases as θ increases. (iii) The value of cosθ increases as increases. (iv) sinθ=cosθ for all values of θ. (v) cotA is not defined for A=0∘.
View Solution
Q. Evaluate: (i) sin18∘cos72∘
(ii) tan26∘cot64∘
(iii) cos48∘−sin42∘
(iv) csc31∘−sec59∘
View Solution
Q.
In ΔABC, right-angled at B, AB=24 cm, BC=7 cm. Determine: (i) sinA, cosA (ii) sinC, cosC
View Solution
Q.Which university did Xuan Zang and I-Qing study at?
View Solution
Q. Choose the correct option and justify your choice : 2tan30∘1−tan230∘=
1√3
√3
2
√2
View Solution
Q. Show that : (i) tan48∘tan23∘tan42∘tan67∘=1 (ii) cos38∘cos52∘−sin38∘sin52∘=0.