The correct option is C 8
The given integral is ∫2π0√1+sinx2dx
Now, sin2x4+cos2x4=1
And, 2sinx4cosx4=sin(2×x4)
Thus, √1+sinx2=√sin2x4+cos2x4+2sinx4cosx4
=√(sinx4+cosx4)2
=∣∣sinx4+cosx4∣∣
Hence, ∫2π0√1+sinx2dx==∫2π0∣∣sinx4+cosx4∣∣dx=4[sinx4−cosx4]2π0
=4[1−0−0+1]=8