The correct option is A 116 a3(π4−13)
Put x=a tan θ⇒dx=a sec2 θ d θ, then we have
I=∫π40a4 tan4θ.a sec2 θ d θa8 sec8 θ
⇒1a3∫π40sin4 θ cos2 θ dθ=I=1a3[∫π40(sin4 θ−sin6 θ)]dθ
=1a3∫π40[(1−cos 2θ)24−(1−cos 2θ)38]dθ
=18 a3∫π40(1+cos 2θ)(1+cos2 2θ−2 cos 2θ)dθ
=18 a3∫π40(1−cos 2θ−cos2 2θ+cos3 2θ)dθ
=132 a3∫π40(2−cos 2θ−2 cos 4θ+cos 6θ)dθ
=132 a3[2θ−sin 2θ2−sin 4θ2+sin 6θ6]π40
=116a3(π4−13)