wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

a0x4dx(a2+x2)4=

A
116 a3(π413)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
116 a3(π4+13)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
116a3(π413)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
116a3(π4+13)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 116 a3(π413)
Put x=a tan θdx=a sec2 θ d θ, then we have
I=π40a4 tan4θ.a sec2 θ d θa8 sec8 θ
1a3π40sin4 θ cos2 θ dθ=I=1a3[π40(sin4 θsin6 θ)]dθ
=1a3π40[(1cos 2θ)24(1cos 2θ)38]dθ
=18 a3π40(1+cos 2θ)(1+cos2 2θ2 cos 2θ)dθ
=18 a3π40(1cos 2θcos2 2θ+cos3 2θ)dθ
=132 a3π40(2cos 2θ2 cos 4θ+cos 6θ)dθ
=132 a3[2θsin 2θ2sin 4θ2+sin 6θ6]π40
=116a3(π413)

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon