The correct option is B −π2log 2
Let I=∫π20log(cos x)dx=∫π20log[cos(π2−x)]dx=∫π20log (sin x)dx
∴2I=∫π20[log(cos x)+log(sin x)]dx=∫π20log (sin x cos x)dx
=∫π20log sin 2x dx−∫π20log 2dx
log sin 2x is an odd function, then ∫π20 log sin 2x dx = 0 = 0 - log 2[x]π20=−π2log 2