The correct option is B π4
Put t=tan x2. Then dt=sec2 x2.12dx⇒dx=2dt1+t2; x=0, π⇒t=0, ∞ sin x=2t1+t2, cos x=1−t21+t2
∴ ∫π013+2 sin x+cos x dx=∫∞013+2⎡⎢
⎢
⎢
⎢⎣2t(1+t2)+[(1−t2)(1+t2)]⎤⎥
⎥
⎥
⎥⎦2dt1+t2
=∫∞0 1+t23+3t2+4t+1−t22dt1+t2=2∫∞012t2+4t+4dt=∫∞01t2+2t+2dt
=∫∞01(t+1)2+12dt=[Tan−1(t+1)]∞0=π2−π4=π4