The correct option is B π2
∫π0tanxsecx+cosxdx
=∫π0sinxcosx1cosx+cosxdx=∫π0sinx1+cos2xdx
Put cos x = t
Then - sin x dx = dt
x=0⇒t=cos0=1
x=π⇒t=cosπ=−1
∫π0sinx1+cos2xdx
=∫−11 11+t2(−dt)
=∫1−111+t2dt
=[tan−1(t)]1−1
=tan−1(1)−tan−1(−1)
=tan−11+tan−11
=2 tan−1(1)
=2.π4
=π2