∫1−1 x17cos4 x dx= [MP PET 1990]
Let f(x)=x17cos4x f(−x)=(−x)17{cos(−x)}4=−f(x) Therefore, ∫1−1 x17cos4 x dx=0
∫1−1x|x|dx= [MP PET 1990; Pb. CET 2004]
∫10e2 In xdx= [MP PET 1990]
∫π20√cot x√cot x+√tan xdx= [MP PET 1990, 95; IIT 1983; MNR 1990]