∫π2π3 √1+cos x(1−cos x)52dx= [AI CBSE 1980]
32
25
I=∫π2π3√1+cos x(1−cos x)52×√1−cos x1−cos xdx =∫π2π3sin x(1−cos x)3dx Now, put 1 - cos~x=t Also, when x=π3,t=12 and x=π2, t=1 Therefore, I=∫112dtt3=∣∣t−2−2∣∣112=32