Let’s divide the numerator and denominator by x2
∫1x2+1x2+1x2dx
Or ∫1x2+1(x−1x)2+2dx
Now substitutet=x−1x
dt=1+1x2
∫1x2+1(x−1x)2+2 Or ∫1(t)2+2dtOr ∫1(t)2+(√2)2dt
∫1(x)2+a2dx=1atan−1(xa) So, ∫1(t)2+(√2)2dt=1√2tan−1(t√2)+c
=1√2tan−1(x−1x√2)+C
∫x2+1x4+1dx will be equal to which of the following