∫sin−113(x).cos−13(x)dx
We can see that the given integral is also ∫sinmx.cosnx dx . Where m & n are rational numbers. So if m+n−22 is negative then we can either substitute cotx or tanx = t whichever is found suitable.
Here, m+n−22=(−113)+(−13)−22=−3
So, we can either substitute cotx = t or tanx = t
∫sin−113(x).cos−13(x)dx
Let’s rewrite the expression to get either tanx or cotx in it
∫cos−13(x)sin−13(x).sin4(x)dxOr ∫cot−13(x)sin4(x)dxOr ∫cot−13(x)(cosec2x)2dxOr ∫cot−13(x)(1+cot2(x))(cosec2(x))dx
Let’s substitute cot (x) = t
−cosec2x.dx=dt−∫t−13.(1+t2)dt=−∫t−13.dt−∫t53.dt−t2323−t8383+c
Let’s substitute t = cot(x) in the above expression -
−3.cot23(x)2−3.cot83(x)8+c