In the given AP.,let first term=a and common difference =d.
Then, Tn=a+(n−1)d
⇒ T13=a+(13−1)d=a+12d
and T3=a+(3−1)d=a+2d
Now, T13=4T3 (Given)
a+12d=4(a+2d)
a+12d=4a+8d
3a=4d
a=43d ...(i)
Also, T5=a+(5−1)d
⇒ a+4d=16 ...(ii)
Putting the value of a from eq.(i) in (ii), we get
43d+4d=16
4d+12d=48
16d=48
d=3
Substituting d=3 in eq.(ii),we get
a+4(3)=16
a=16-12
a=4
∴ Sum of first ten terms is
S10=n2[2a+(n−1)d] where n=10
=102[2×4+(10−1)3]
=5[8+27]
=175