Let a,d and n be the first term,common difference and number of terms of an AP respectively.
Now,
a26=a+25d=0 ...(1)
a11=a+10d=3 ...(2)
on doing (1)-(2) , we get
15d=−3
⇒d=−15
On substituting the value of d in (1), we get
a+25×−15=0
⇒a=5
Again, an=a+(n−1)d=−15
On substituting the values of a and d, we get
5+(n−1)×−15=−15
⇒(n−1)×−15=−15−5=−265
⇒(n−1)=26
⇒n=27
Therefore,
d=−15,n=27