The 2nd, 3rd and 4th terms in the expansion of (x+y)n are 240, 720 and 1080 respectively. Find x, y, n.
n = 5, x = 2, y = 3
Given T2=nC1xn−1y=240 . . .(i)
T3=nC2xn−2y2=720 . . .(ii)
and T4=nC3xn−3y3=1080
Multiplying (i) and (iii), we get
nC1×nC3×x2n−4.y4=240×1080⇒ nC1×nC3×(xn−2y2)2=240×1080⇒ nC1×nC3×(720nC2)2=240×1080
⇒ n×n(n−1)(n−2)1.2.3×720×720n2(n−1)24=240×1080⇒ n2(n−2)(n−1)×2×720×7203n2(n−1)2=240×1080⇒ 4(n−2)3(n−1)=1∴ n=5
from (i), 5C1x4y=240
⇒ x4y=48
from (ii), 5C2x3y2=720
x3y2=72
⇒ x3(48x4)2=72⇒ (48)2=72 x5∴ x5=32∴ x=2
from (iv), 24y=48
∴ y = 3
Hence n=5,x=2,y=3