wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The above figure is the graph of a continuous and differentiable function y = f(x). Between point A & B the function has its derivative zero at how many points -


A

3

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

4

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

5

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

None of these

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

5


We are given the function is continuous and differentiable. We want to find the number of points where the derivative of f(x) becomes zero. Derivative becomes zero means the slope of the tangent also becomes zero at that point. We can guess by seeing the graph that there are 5 such places between A and B, corresponding to a maxima or minima.

We can understand this using Rolle’s theorem also. For that, let the points where the straight line cuts the graph between A and B be a1, a2, a3 and a4. Now, if we consider the interval [A, a1], we will find that Rolle’s theorem is applicable there. Function is continuous and differentiable as given in the question and the value of the function at A and a1 are equal, because the line cuts the graph at a1 and A. According to Rolle’s theorem, there should be at least one point in the interval [A, a1], where f’(x) becomes zero.

Since we can have 5 such intervals, there will be total 5 points where the derivative becomes zero.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon