In △OAB,
tanθ=ABOA
OA=r
⟹AB=rtanθ
cosθ=rOB
OB=rcosθ=rsecθ
OP+PB=OB
Therefore, BP=rsecθ–r
arc(PA)=πr.θ180 [Arc length formula]
Therefore required perimeter :=AB+BP+arc(PA)
=rtanθ+πr.θ180+rsecθ−r
=r[tanθ+secθ+πθ180−1]
Hence proved.
Figure shows a sector of a circle, centre O, containing an angle θ ∘. Prove that:
(i) Perimeter of the shaded region is r(tanθ+secθ+πθ180−1)
(ii) Area of the shaded region is r22(tanθ−πθ180)