The absolute maximum and minimum value of f(x)=3x4−8x3+12x2−48x+25,x∈[0,3] are respectively
Differentiate the function f(x)=3x4−8x3+12x2−48x+25 with respect to x,
f′(x)=12x3−24x2+24x−48
Put f′(x)=0,
12x3−24x2+24x−48=0
(x−2)(12x2+24)=0
(x−2)12(x2+2)=0
x−2=0
x=2
Or,
x2=−2
x=√2i
But √2i is an imaginary number, so the value to be considered is x=2.
Now, substitute the value of x and the end points in the given function.
f(0)=3(0)4−8(0)3+12(0)2−48(0)+25
=25
f(2)=3(2)4−8(2)3+12(2)2−48(2)+25
=−39
f(3)=3(3)4−8(3)3+12(3)2−48(3)+25
=10
Therefore, the maximum value is 25 and the minimum value is −39.