The absolute maximum and minimum value of f(x)=sinx+cosx,x∈[0,π] are respectively
Differentiate the given function f(x)=sinx+cosx
f′(x)=cosx−sinx
Put f′(x)=0,
cosx−sinx=0
cosx=sinx
tanx=1
x=tan−1(1)
x=π4
Put the value of x and the end points of the given interval in the given function.
f(π4)=sin(π4)+cos(π4)
=2√2
=√2
f(0)=sin(0)+cos(0)
=1
f(π)=sin(π)+cos(π)
=−1
The maximum value of the given function is √2 and the minimum value is −1.