Given, f(x)=2x3−15x2+36x+1
f′(x)=6x2−30x+36=6(x−3)(x−2)
⇒f′(x)=0
⇒x=2,3
Now, evaluating the value of f at these points and the end points of the interval [1,5],i.e. at x=1,x=2,x=3,x=5.
So,
f(1)=24
f(2)=29
f(3)=28
f(5)=56
Thus, absolute maximum value of f on [1,5] is 56 occuring at x=5.