The absolute minimum and maximum values of f(x)=4x−x22,xϵ[−2,92] are respectively
Differentiate the given function f(x)=4x−x22.
f′(x)=4−x
Put f′(x)=0,
4−x=0
x=4
Put the value of x and the end points of the given interval in the given function.
f(4)=4(4)−422
=8
f(−2)=4(−2)−(−2)22
=−10
f(92)=4(92)−(92)22
=638
=7.8
The absolute maximum value of the given function is 8 and the absolute minimum value is −10.