The absolute minimum and maximum values of f(x)=sinx+12cos2x,xϵ[0,π2] are respectively
Differentiate the given function f(x)=sinx+12cos2x.
f′(x)=cosx−sin2x
Put f′(x)=0,
cosx−sin2x=0
cosx=2sinxcosx
sinx=12
x=sin−1(12)
x=π6
Put the value of x and the end points of the given interval in the given function.
f(π6)=sin(π6)+12cos2(π6)
=34
f(0)=sin(0)+12cos2(0)
=12
f(π2)=sin(π2)+12cos2(π2)
=12
The maximum value of the given function is 34 and the minimum value is 12.